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Abstract— Autonomous vehicles on city roads and especially
in pedestrian environments require agility to navigate narrow
passages and turn in tight spaces, leading to the need for a real-
time, robust and adaptable controller. In this paper, we present
orientation and context aware controllers for autonomous
vehicles that can closely track the reference path wit alh respect
to the current state of the vehicle, environmental properties, and
the desired target orientation at the desired target location. Our
proposed controllers are derived from the widely used pure
pursuit controller. We validate our proposed controllers with
respect to the baseline pure pursuit controller in simulation and
on a full-size autonomous vehicle in a pedestrian environment.
Our experimental results suggest significant improvements in
adaptability and tracking performance compared to the pure
pursuit controller.

I. INTRODUCTION

Urban environments such as city roads and pedestrian
walkways present challenging problems for autonomous
vehicles to navigate on narrow pathways, maneuver sharp
turns and park in tight spaces. This requires autonomous
vehicle controllers to be adaptable in real-time to a diverse
range of scenarios while attempting to realize the desired
path and most importantly the desired target orientation.
Traditionally, geometric path tracking algorithms have been
used for motion control of autonomous vehicles. These
algorithms primarily derive a geometric relation between
the vehicle pose and its reference path without weighing in
the kinematics and dynamics of the vehicle. The simplicity,
soundness, and low computational cost of these algorithms
contribute to their prevalence in autonomous vehicles for
path tracking.

The earliest and most routinely used path tracking con-
troller is the pure pursuit controller [1] which owes the
name to its conceptualisation. Given that an autonomous
vehicle is tasked to chase a moving point on a reference path
based on its current location, it is said to be in a constant
‘pursuit’ of the goal-point, where the goal-point is selected
based on a fixed look-ahead distance. This is comparable
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to the well known ‘follow-the-carrot’ controller [2], wherein
the autonomous vehicle is directly steered towards a chosen
carrot-point within one look-ahead distance. In contrast, the
pure pursuit controller entails calculating a curvature to be
followed between the current location of the vehicle and
its instantaneous goal-point. As a consequence, an angular
velocity is calculated for the autonomous vehicle to attain its
instantaneous goal at a certain look-ahead distance from it.
The process is repeated until the vehicle reaches the target
goal point on its reference path.

The pure pursuit controller is computationally simple and
robust to large disturbances. However, given the controller’s
dependency on only the basic attributes of the geomet-
ric model, it gives rise to certain weaknesses. These are
mainly attributed to the improper selection of the look-ahead
distance which results in poor path tracking performance.
Specifically, the controller lacks in following a given refer-
ence path due to the constant need to tune the look-ahead
distance to optimise its performance and converge to the
path. Thus, leading to steering latency. This further results in
cutting corners, as the controller does not explicitly consider
the actual curvature of the path.

In this paper, we propose two novel path tracking con-
trollers which not only achieve the desired path, similar to the
pure pursuit controller, but also obtain the target orientation
at each point. The contributions of this paper are: (a) a novel
orientation-aware path tracking controller which accounts for
the required target orientation, (b) a novel context-aware
path tracking controller with dynamically varying look-ahead
distance based on the road contextual information and the
vehicle state, (c) a theoretical analysis of the proposed
orientation-aware controller, and (d) a validation of our
proposed controllers in challenging simulated and real-world
scenarios and their comparison with the baseline pure pursuit
controller.

II. RELATED WORK

The geometric controllers, such as pure pursuit [1] and
follow-the-carrot [2] account only for the desired target posi-
tion in order to determine the vehicle motion for path track-
ing. Unlike these controllers, the vector pursuit controller
[3] and proportional path tracking controller [4] consider the
required target orientation in addition to the required target
position. Specifically, vector pursuit controller is based on the
theory of screws [5] to provide the desired turning radius
based on the vehicle’s current position and orientation. It
has been observed that the vector pursuit controller is more
robust and accurate in path tracking performance than the



traditional pure pursuit controller. However, the controller’s
performance is traded-off with the computational complexity
of the algorithm. Similar to vector pursuit and proportional
path tracking controllers, our proposed controllers also incor-
porate orientation information. In addition to being robust to
the sensitivity of the look-ahead distance and the ability to
handle sudden large position and heading errors, our pro-
posed algorithm is computationally tractable and therefore
suitable for real-time implementation.

The performance of the aforementioned geometric con-
trollers are highly dependent on the appropriate selection of
the look-ahead distance. Thus, several variants [6]-[13] of the
pure pursuit algorithm have been proposed to primarily ad-
dress the problem of appropriate selection of the look-ahead
distance based on different independent parameters such as
vehicle’s velocity and curvature of the road. Compared to
these studies, our work proposes to dynamically select the
look-ahead distance by accounting for both the vehicle status
and environmental properties to guide the controller for a
more steady and conformable path tracking solution.

In addition to the geometric controllers, there exist other
classes of controllers such as dynamic, model-based, and
classic controllers [14]. The dynamic controllers [15]-[16]
account for the dynamic effects i.e., internal forces, energy,
or momentum within the system to describe the motion
of the vehicle. This necessitates the need for costly and
dedicated sensors or extra data-processing steps for integra-
tion of dynamic feedback. Also, similar to the pure pursuit
controller, the dynamic controller performance is dependent
on the appropriate selection of the look-ahead distance. The
model-based controllers have garnered growing interest as
they consider whole vehicle model to derive its control law
[17]. The recent developments of novel model-predictive
controllers based on time-elastic-bands [18] have the added
flexibility of temporal discretization for time-optimal control.
Such approaches have improved the run-time performance
over the conventional model-based controllers at the trade-
off of accuracy. Lastly, the well-known classical controllers
such as PID [19]-[20] and sliding mode controllers [21]-
[22] are known for their simplicity in design, however,
they require parameter-optimisation for different operating
conditions. Also, they are often vulnerable to chattering and
dead bands which further influence their performance and
stability [23].

Each of the aforementioned path tracking algorithms have
their respective strengths and weaknesses. The selection of
an appropriate algorithm is influenced by the environmental
conditions, computing resources, and controller parameters
that are required to be regulated. An adaptive geometric
controller such as the one proposed in this paper offers a
simple, efficient, and computationally tractable solution by
virtue of an easy implementation and regulation of basic
state variables. Therefore, the focus of this work is on
geometric controllers and the proposed controllers will be
bench-marked against the original pure-pursuit controller.

III. PURE PURSUIT CONTROLLER

We propose two path tracking controllers which overcome
the drawbacks of the classic Pure Pursuit (PP) controller.
In order to introduce the contributions of our proposed
controllers, we first analyse the PP controller.

Given the current state vector X(t) and the target state
vector Xref (t), the objective of the PP controller is to
find the control vector, u(t) such that X(t) − Xref (t) is
minimized. We define, X(t) = [xt, yt, θt] as the state vector
representing the pose of the vehicle and u(t) as the one
dimensional control vector representing the steering angle,
δ(t). Thus, u(t) = δ(t) where, δ(t) is constrained by the
maximum allowable steering angle, such that, −δmax ≤
δ(t) ≤ δmax. For the sake of simplicity, the dependency
of time will not be specified in the following equations. We
first analyze the constrained capabilities of the PP controller
based on the following two observations.

Observation 1: The PP algorithm outputs a unique cur-
vature based on its control law to reach a specific point on
the path but it does not consider the actual curvature of the
path.

The PP algorithm tends to follow a point regardless
of the orientation i.e. it follows a position rather than a
pose. This can become particularly problematic when high
curvatures have to be pursued along the path, as it would
happen often for vehicles that are traveling in pedestrian
environments where sudden changes of trajectories (in form
of high curvature bents) would be required for avoiding
pedestrians that might appear on the way. The PP algorithm
geometrically plans for the target point (xref , yref ) with
given steering angle δ and a constant wheelbase, L, using
a bicycle model, as represented in Eq. 1 and illustrated in
Fig. 1a.

δ = tan−1

(
2Lsin(η)

lahead

)
(1)

where, lahead is the look-ahead distance between the cur-
rent position of the vehicle (x, y) and the target point
(xref , yref ). η is the look-ahead angle, i.e. the angle between
the current heading of the vehicle and the line-of-sight
direction of the look-ahead target point. The look-ahead
angle, η and distance, lahead are the only two variables
required by the PP algorithm.

In Fig. 1a, the current heading is straight ahead at the
current position of the vehicle (x, y) and redrawn at the target
point (xref , yref ) for reference. The current position of the
vehicle (x, y) is set to intersect with the center of rear axle.
The target orientation annotated at the target point represent
the required orientation of the vehicle after following the
motion along the arc length. With a constant steering angle,
δ, the vehicle will consequently follow the arc connecting
the current and target points, having radius R, represented
by Eq. 2, where γ is the curvature of the path.

R =
1

γ
=

lahead
2sin(η)

(2)

An analysis of angles is fundamental for understanding
the structure of this geometry. First, the closed triangle is



isosceles as two sides have the same length R. The arc
connecting (x, y) with (xref , yref ) will always have an
internal angle 2η given the geometry of the problem. Lastly,
the angle between the direction of look-ahead distance and
the target orientation of the vehicle is also η. This means that
the difference in angle between current heading and target
orientation will be equal to 2η. Based on the geometrical
analysis illustrated in Fig. 1a, an important property of the
algorithm can be observed which we describe below.

Observation 2: Any point lying on a straight line starting
from the current position is reached with the target ori-
entation angle 2η with respect to the current heading, if
controlled by PP algorithm.

The consistency of the potential target orientation angles
defined by Observation 2 reveals how the geometry of the
algorithm works. A graphical illustration of the same is
presented in Fig. 1b. This characteristic of the PP algorithm
confirms Observation 1. Specifically, the PP algorithm allows
us to apriori identify the orientation of each potential target
point achievable from the current location of the vehicle
which is independent of the curvature of the path. In fact, the
Observation 2 shows that according to PP algorithm, each
point has its foretold orientation defined exclusively by η.
Hence, we prove that Observation 2 induces Observation 1.

(a) Geometry (b) Property
Fig. 1: Pure Pursuit controller

IV. PROPOSED APPROACH
We apply the observations from Section III to derive two

novel path tracking algorithms: (a) orientation aware pure
pursuit (OPP) and (b) context aware pure pursuit (CPP).
Consider rotating the heading direction illustrated in Fig.
1b by a certain angle. This action will change the target
orientation of the target point. If the target orientation of
the arc obtained from the PP algorithm and the desired
target orientation do not match, an alternative current heading
would guarantee that the right curve would meet both the
requirements of matching the coordinates and the orientation
of the reference point. It is, however, important to emphasize
that non-holonomic constraints should not be violated.

Fig. 2 shows an optimal heading which would allow the
vehicle to not only reach the reference point (xref , yref ),
but also to match the target orientation θref . The general
intuition while visualizing oneself in the current heading
position and being asked to reach the reference point with a
specific target orientation, would be to spontaneously first

Fig. 2: Illustration of curvature required for target orientation.

turn left in direction of optimal heading and then right
in order to achieve the target pose. This thought has to
be defined mathematically using a systematic control law.
Hence, we propose an orientation-aware controller.

A. Orientation-Aware Pure Pursuit Controller

Given the target orientation, if the ideal blue arc path in
Fig. 2 is too late to be achieved, then we can use Observation
2 for defining the optimal heading.

(a) Orientation analysis (b) New look-ahead angle
Fig. 3: Orientation-aware controller

The key point for achieving the optimal heading for the
new desired target orientation is based on first observing
that the line connecting the current position and look-ahead
point in Fig. 3a is constant and can be considered as the
reference. We introduce a new variable ϕ which is the angle
between the reference and the new desired target orientation.
Considering Observation 2, we can determine the angle
between the current and the optimal headings as 2ρ, given
by Eq. 3 and illustrated in Fig. 3a.

2ρ = −ϕ− η (3)
Fig. 3b shows the optimal heading and the new look-ahead
angle ρ with respect to the reference.

B. Control law

We derive a general control law to obtain the steering
angle, δ, for the given current poses (x, y, θ) and reference
poses (xref , yref , θref ). The optimal heading is obtained
based on the observations, from Fig. 1b and Fig. 3a, such that
the target orientation can be reached at any point lying on a
particular straight line which has the new look-ahead angle,
ρ. The correction for the optimal heading will happen when
the new look-ahead distance, lnew, is chosen. Consequently
the modified control law is given by Eq. 4 where lnew has
to be tuned.

δ = tan−1

(
2Lsin(ρ)

lnew

)
(4)



The lnew parameter represents the intensity of the current
trajectory’s correction. If lnew is small, it means that the
current position will be corrected much earlier in order
to reach the target point with the target orientation. This
produces more oscillations on the movement of steering
wheel with the same principle as the PP algorithm. A bigger
lnew makes the system more stable having fewer oscillations
but will make it converge to the ideal position with an
increased number of iterations while cutting corners. We
empirically observe that there is a specific ideal ratio between
lnew and lahead. This will require us to tune only one
parameter, lahead, similar to the PP controller. In contrast,
the angle ρ is unique for the current state vector (x, y, θ)
and the target state vector, (xref , yref , θref ), as presented in
Eq. 3.

C. Context-aware Pure Pursuit Controller

The performance of geometric path tracking controllers
depends on the appropriate selection of the look-ahead
distance such that it can dynamically instruct the vehicle
about the extent to track the reference path. Hence, the look-
ahead distance needs to be adaptable to a variety of roads
and vehicle states.

We propose a novel scaling function for dynamically
selecting the look-ahead distance for an improved compli-
ance, maneuverability, and steadiness. This variable look-
ahead function helps to overcome the shortcomings of a
constant look-ahead distance. In addition, it attenuates the
over-sensitivity of the orientation-aware algorithm for avoid-
able oscillations along its path. Therefore, we keep the
desirable attributes of both the PP and OPP controllers while
minimising their associated inconveniences. In order to make
the look-ahead distance adaptable, we propose a dynamic
lnew distance referred as lnew var which is determined using
six parameters. These parameters are maximum deceleration
for braking distance (BD), vehicle’s velocity (v), vehicle’s
steering angle (δ), heading difference angle (2ρ) from the
reference path, cross-track error (e), and curvature of the
road (ω) being traversed. The lnew var is calculated using Eq.
5 where k1, k2, k3, k4, and k5 are tuning parameters with
the first one being positive and others negative.
lnew var = k1v +BD + (k2δ + k3ω + k4e+ k5(2ρ)) (5)

The value of k1 was fixed at 0.7 for all simulation and
real-world experiments based on the empirical analysis of
convergence to the reference path and vehicle stability. The
braking distance (BD) was measured conservatively at a
maximum deceleration of 0.25g for the upper limit of the
operating velocity while testing in simulations and on a full
size autonomous vehicle. The maximum values of all the
negative tuning parameters (k2, k3, k4, k5) that moderate the
look-ahead distance were determined such that they always
contribute a net value equal to the vehicle’s braking distance,
which in turn hinges on maximum deceleration to traverse
the path safely. The real time values for the above tuning
parameters (k2, k3, k4, k5) were calculated proportionately to
their maximum computed values and current steering angle

(δ). The velocity (v) was made variable as a function of
steering, with higher values being applied for smaller steering
angles and lower ones for sharper steering inputs. This helps
the planner slow the vehicle down preemptively for a sharp
turn. The speed is further smoothed with a first-order low-
pass filter to filter out any erroneous measurements for pre-
venting slipping and dynamic roll-overs and inducing better
stability to the vehicle’s motion. It thereby helps minimise
abrupt transitions of linear and angular accelerations and
improve continuity in motion. Therefore, as a consequence
of Eq. 5, the controller looks farther onto the reference
path when the vehicle speeds up as it drives the positive
factor higher and looks closer when the steering input,
road curvature, cross-track error, and/or heading difference
increase as the net negative value of lnew var grows. These
additional tuning parameters allow us a more configurable
and adaptable controller in unstructured environments and
altering traffic conditions as illustrated both qualitatively and
quantitatively in the subsequent sections.

V. EXPERIMENTS

We validate our proposed path tracking algorithms in
simulation as well as on a full size autonomous vehicle.
Specifically, we compare the OPP and CPP with the original
PP controller as the baseline method. The input to the con-
troller is the reference path and the outputs of the controller
are throttle and steering commands to guide the vehicle both
laterally and longitudinally. The metrics used for validation
of the controller are the cross-track error of the vehicle
relative to the reference path and angular jerks experienced
while negotiating the curved path segments. The cross-track
error is used to validate the safety of the controller and the
jerk for the ride comfort. The stability of the controller is
assessed with respect to the oscillations resulting from the
changes in steering angle which is also quantified in terms
of cross-track error and angular jerks.

A. Simulation Results

We validate the robustness and adaptability of our pro-
posed controllers on two significantly challenging paths that
require the vehicle to maneuver discontinuous paths which
are specifically challenging for the PP controller. These
tracks are U-shaped and 8-shaped tracks, as seen in Fig.
4. They are developed based on inspiration from human car
driving license test [24].

Fig. 4: Test tracks annotated with start point (S), middle
points (M, M1, M2, M3) and finish point (F)



Fig. 5: Performance Comparison on U-shaped track

Fig. 6: Performance Comparison on 8-shaped track

Unlike the standard 8-shaped track that requires a cross-
over point, we require the vehicle to keep on the same side
of the path, which leads to a demand on the steering to
transition from one extreme yaw angle to the other within an
unusually tight space. This helps us in assessing the agility of
the controller to negotiate demanding tracks which is critical
for safe navigation around obstacles.

We build the simulation environment using ROS and
Gazebo [25]. We developed a modified CATvehicle model
[26] to simulate an autonomous vehicle. The simulated
vehicle is four-wheeled, enabled with Ackerman steering
based on Ford Escape model, as observed in Fig. 4. The
simulated vehicle and the real autonomous electrical golf
buggy are both controlled through ROS. The braking distance
was calculated to be 0.45m. We performed three iterations
for each track and their mean shape profiles along with the
mean cross track error and jerk values are reported in the
following sections.

1) Shape Profile: We qualitatively validated the con-
trollers by analyzing the shape of their respective tracked
paths on the two aforementioned test tracks. The tracked
paths by the individual controllers are overlaid on their
respective reference paths as shown in Fig. 5 and Fig. 6.
The PP controller performed well on the straight sections
of the path but while negotiating a turn, both on U-shaped
and 8-shaped tracks, it tended to cut corners and consistently
deviated away from the ideal path throughout all the curved
sections. Whereas, the OPP performed a lot better, maintain-
ing its followed path along the curved sections as it considers
the required pose at each point on the path. However, the
controller deviated while maneuvering the changeover points
of yaw angle at middle points, M1 and M3 in Fig. 4 of the
8-shaped track, which is also the most crucial and difficult
juncture in the entire track. Also, for the U-shaped track,
the controller strays a little to the left just before engaging

with the high curvature towards the right near the middle
point, M. This is due to the control law from Eq. 4. The
CPP controller recorded a similar performance to the OPP
controller along the curves. It showcased the best overall path
tracking behavior while staying the longest on the path and
deviating the least.

2) Cross-track error: The next study was for quantifying
the lateral deviations of the vehicle from its reference path.
We measure the integrated area of deviation and the max-
imum variation from the reference path using ImageJ soft-
ware [27], giving us mean and maximum cross-track error
as a performance metric. Table I demonstrates a significant
reduction in the cross-track error from PP to OPP controller.
The CPP controller further reduces the cross-track error.
The improvement in maximum deviation using CPP is much
more evident on 8-shaped track given its combination of
orientation-awareness and contextual-awareness, rendering it
proficient in tracking a variety of paths more effectively. The
CPP controller offers good lateral and longitudinal adapt-
ability to different path conditions and its performance is
consistent regardless of the test track, unlike the PP controller
[28]. A controller with low cross-track error is most valued
in highly constrained environments involving sharp turns or
multiple obstacles where it would be desirable for the vehicle
to not cross the defined operational environment boundaries
or bump into obstacles.

3) Varying look-ahead: We measure the variation in
cross-track error with an increase of the look-ahead distance
for the PP and OPP algorithms which use fixed look-ahead
distance. We used the ‘8’ shaped test track as it was more
challenging compared to the ’U’ shaped track.

As it can be observed from the plot in Fig. 7, although the
cross-track error increased significantly for both controllers
with an increase in look-ahead distance, the rate of increase
of the error with look-ahead distance is noticeably higher in



Fig. 7: Varying look-ahead on 8-shaped track

the case of PP. This indicates a reduced dependence of OPP
on the look-ahead distance. This study also demonstrates
the need for a smarter and dynamic look-ahead which
contextualises both the vehicle and the environment to make
its path tracking decisions.

4) Jerks: Lastly, the study to quantify ride quality in-
volved measuring the angular jerks by virtue of steering
changes for a comparison between OPP and CPP. As ob-
served from Table I, OPP reported a maximum jerk value of
2.279 m/s3 whereas CPP showcased an improvement in ride
comfort with a reported maximum jerk value of 1.03 m/s3

on the figure of 8. Although the maximum jerk here sees an
increase from PP to CPP, this was only observed along high
curvatures while staying near the comfort threshold [29]. The
increase in the jerk value along the curve was observed due
to a higher compliance to the actual path curvature unlike in
PP where the actual curvature is not considered.

Controller Max. Error Mean Error Max. Jerk
(m) (m) (m/s3)

Utrack 8track Utrack 8track Utrack 8track
PP 0.581 0.983 0.161 0.338 0.519 0.693
OPP 0.276 0.955 0.031 0.105 1.3 2.279
CPP 0.249 0.688 0.019 0.101 0.621 1.03

TABLE I: Performance study for simulations

B. Field trials

The real-world experiments are implemented on an au-
tonomous golf buggy [30] developed by Singapore-MIT
Alliance for Research and Technology (SMART) which is
shown in Fig. 8. The vehicle is equipped with two LiDARs,
one Inertial Measurement Unit (IMU), and wheel encoders
for pose estimation and is localised using the Adaptive Monte
Carlo Localisation [31]-[32]. The golf buggy has an on-board
computer with Intel Core i7 processor, 16 GB RAM and
Solid State Drives. All experiments reported in this section
were executed on it in real-time.

Fig. 8: Autonomous golf buggy

The vehicle was tested in autonomous mode with a remote
safety driver in a pedestrian environment of a university
campus. The shape profile and cross-track error are presented
in Fig. 9 and Table II, respectively. The cross-track error is
observed to be the largest for PP and comparable for the
other two controllers whereas the maximum angular jerk
is observed to be the highest for OPP controller at 2.05
m/s3, followed by 0.92m/s3 and 0.672m/s3 for CPP and PP
controllers, respectively. Though the maximum angular jerk
is the least for the PP controller, it narrowly escaped an
obstacle by a margin of 8.3 cm distance. The obstacle is
illustrated by a red dot in Fig. 9 toward the beginning of
the turning path. In comparison, OPP and CPP controllers
allowed the test vehicle a distance of 31.1 cm and 33.7 cm
respectively helping it maneuver around that segment more
safely.

These results are qualitatively consistent with the sim-
ulation results. There is improvement in the cross-track
error from PP to OPP controller and in jerks from OPP to
CPP. A compilation of the results presented in this section
are provided at the following online video link, https:
//youtu.be/Q_T_H6-yhiM.

Fig. 9: Shape profiles for PP, OPP, and CPP respectively.
yellow: reference path, red: tracked path, shaded: cross-track
error

Controller Max. Error Mean Error Max. Jerk
(m) (m) (m/s3)

PP 0.417 0.105 0.672
OPP 0.252 0.049 2.05
CPP 0.361 0.067 0.92

TABLE II: Performance study with real world data

VI. DISCUSSION AND CONCLUSION

We proposed two novel path tracking algorithms, OPP and
CPP, for autonomous vehicles to navigate narrow passages
and tight turns. Both algorithms consider not only the target
position but also the target orientation of the vehicle for
path tracking. OPP controller reduced the average maximum
cross-track error by 75% compared to the PP baseline in
simulation and 53.3% during field trials. The CPP controller
used the contextual information of the vehicle state and the
environment to obtain dynamic look-ahead distance. The
average maximum cross track error for CPP was significantly



reduced by 79% in simulation and 36% for field trials.
However, the enhanced conformity to the path by the two
controllers was traded-off by an increased cost for maximum
angular jerks. The maximum jerk for CPP was increased by
34% in simulation and 37% for field trials when compared
to the orientation ignorant PP algorithm, although staying
near comfort threshold. However, mean jerk reported for all
controllers were insignificant. In conclusion, our proposed
orientation and context aware path tracking controllers have
provided promising results for improving the widely-known
PP controller.
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