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Abstract— Government data identifies driver behaviour er-
rors as a factor in 94% of car crashes, and autonomous vehicles
(AVs), which avoids risky driver behaviours completely, are
expected to reduce the number of road crashes significantly.
Thus, one of the central focuses of developing AVs is to ensure
safety during navigation. However, in reality, AV safety has been
far below its expectation, and so far, no government has allowed
for complete autonomous driving without human supervision.
This paper proposes a dynamic safe path planning algorithm for
AVs with Gaussian process regulated risk map. By reasonably
assuming that the output of the object detection and tracking
module follows a multi-variate Gaussian distribution, we put
forward a safe path planning paradigm with Gaussian process
regulated risk map, ensuring safety with high confidence.
Both simulation results and in-vehicle tests demonstrate the
effectiveness of the proposed algorithm.

I. INTRODUCTION

Path planning has been one of the prevailing research
topics in autonomous vehicles along with environmental
perception, localization and mapping [1]. To implement
path planning for autonomous vehicles and/or robots, one
typically requires (a). a route planner which generates a
sequence of configurations (position and orientation) taking
the vehicle from the start to the goal, and (b). a motion
planner, which transforms the configuration sequence into
actuator commands conforming to the constraints of vehicle
dynamics [2]. This paper focuses on the former with an
emphasize on the safety requirement in the configuration
space under perception uncertainties.

Statitistics show that driver behaviour errors lead to as
many as 94% of the total car accidents [3], while autonomous
vehicles, which excels in manoeuvre accuracy, are expected
to increase driving safety. However, in order to achieve ab-
solute safe manoeuvres in AVs, one requires perfect environ-
mental models, which are too challenging, if not impossible,
given current sensing and communication technologies and
noisy real world scenarios. Hence, one needs a planning
algorithm which works safely with perception uncertainties.
This paper assumes that the perception uncertainty follows
a Gaussian process, i.e. the perceived obstacle location and
velocity from the perception module is a sample drawn from
a multi-variate Gaussian distribution around its true values,
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and proposes a Safe Path Planning And Mapping (SPPAM)
algorithm, which ensures the path safety with high confi-
dence while iteratively reducing perception uncertainties.

This paper formulates AV’s real time path planning and
decision making process into a canonical optimization frame-
work with the objective of reaching the goal with minimal
‘risk-projected’ cost, while conforming to the safety con-
straint with high confidence. The contribution of the paper
can be summarized as follows: (1) an on-line Gaussian
risk map update process is proposed taking the real time
obstacle detection and tracking data stream as input; (2)
SPPAM outputs the safest path based on current risk map and
decreases the environmental uncertainty within the risk map
with subsequent object detection and tracking; (3) SPPAM
is able to perform proactive path planning in dynamic
environment with forecasted risk map; and (4) SPPAM is
integrated together with canonical 3D object detection and
tracking framework and verified in a real AV testbed.

The remainder of the paper is organized as follows.
Section II surveys the related works on AV path planning,
safe path planning, and emerging safety planning/exploration
techniques in GP-regulated environments, followed by the
formal introduction and analysis of SPPAM in Section III.
Simulation results and analysis are provided in Section IV,
followed by the in-field test on an AV platform in Section V.
The paper ends with concluding remarks and future direc-
tions in Section VI.

II. RELATED WORKS

In this section, we first give a brief survey on path planning
for autonomous vehicles, and then focus on safe path plan-
ning algorithms under uncertainties. As safety issue has been
gaining increasing popularity in a broader domain than path
planning, we also review some of the recent technologies
on safe decision making in GP-regulated environment as
the underlying rationale is closely related to our SPPAM
algorithm.

A. Path Planning for Autonomous Vehicles

Path planning for AVs is a difficult decision making
problem in that a vehicle is a non-linear, non-holonomic
system and such system is required to maintain the desired
performance (e.g., running at a desired speed) while avoiding
collision with surrounding vehicles and infrastructure [4].

Canonical path planning methods can be roughly di-
vided into three categories, namely, graph-based planners,
sampling-based planners and trajectory optimization meth-
ods [5]. (1) Graph-based planners represent the environment
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in a grid-based manner, and many (well known) algorithms
exist for efficient path planning such as Dijkstra’s algorithm,
A* algorithm and its variants e.g., Anytime A* [6] and
D* lite [7]. (2) Sampling-based planners such as Rapidly-
exploring Random Trees (RRT) [8] and Probabilistic Road
Maps (PRM) [9] generate feasible trajectories conforming to
vehicle dynamics, and an evaluation function is performed
over those trajectories and may even guide the sampling strat-
egy. The best trajectory out of the sampled ones is selected
for execution. (3) Trajectory optimization methods formulate
path planning as an optimization problem taking account of
the desired performance and relevant constraints [10]. For
example, Liu et al. use model predictive control to solve
a sequence of finite time trajectory optimization problem
in a recursive manner and take account of the update of
environmental states during its planning process [4].

B. Safe Path Planning Under Uncertainties

Almost all the path planning methods, which directly
concentrate on safety under environmental uncertainties,
follow the sampling-based planner framework, see [11]. The
methods typically propose sampled trajectories to a certain
safety-critical performance evaluator, and the returned metric
will guide the next sampling strategy until the proposed
trajectory attains optimum or reaches a certain termination
condition, say time limits. Bouraine et al. proposes a p-
safe RRT for safe path planning in unknown dynamic
environment [12], and the algorithm iteratively proposes
sampled RRT trajectories until the proposed one is p-safe
per definition.

Another research direction in safe path planning is to
formulate the problem into a risk-aversive way, in that risk
is deemed as the opposite of safety. The environmental
uncertainties are transformed into a risk value either deter-
ministically [13] or stochastically [14]. This paper focuses
on the stochastic nature of the environment, hence, we only
survey the literature which treats risk as a random variable
(RV). The corresponding research field can be referred as
stochastic risk-aversive path planning (SRAPP). In SRAPP,
the problem is usually formulated into an optimization frame-
work, in which the term risk1 can be defined as value at risk
(VaR), conditional value at risk (CVaR) or mean-variance
minimization [15]. Corresponding algorithms are developed
to solve the optimization problem either globally or locally.

The risk map in risk-aversive path planning is usually
established through some heuristic predictors, such as in [16]
or function approximators which maps locations to corre-
sponding risk values or distributions. For example, Pierson
et al. proposes a path planning method for car overtake,
and defines the risk as a combined H-function over the
space [16]. Yang et al. builds a neural network approximation
to generalize the representation of risk values across the
environmental field [17]. To the best of our knowledge,
no prior work in risk map building assumes probabilistic

1It is worth noting that the definition of RV risk is usually required to be
first order stochastically dominant (FSD) [14]

dependencies in the risk map. This paper pioneers in a way
of building the risk map through explicitly establishing the
spatial correlation among risk values in the environment. In
this way, when we get measurements of a certain subset of
the risk values, we are able to update and hence predict the
risk value distributions over other areas in the environment. It
helps degrades the uncertainty in risk map, and hence makes
the safe path planning phase easier.

C. Safe Decision Making in GP-Regulated Environment

Safe decision making and/or planning under uncertainty
has been gaining increasing popularity over the past several
years, and one of the research directions is to assume that
the environmental uncertainties are regulated by Gaussian
processes [18]. Berkenkamp et al. propose a model-based
safe exploration strategy to guarantee the stability of a
control system while exploring the unknown but safe regions
of interest [19]; Turchetta et al. applies the safe explo-
ration strategy in GP-regulated environment to the model-
free settings, and demonstrate its applicability to UAV’s safe
exploration [20]. More and more researchers are investigating
safe decision making and/or planning algorithms in GP-
regulated environment, see [21]. Wachi et al. further investi-
gate safe reinforcement learning techniques in GP-regulated
environment, and showcase the Mars’ Rover safe navigation
in simulation [22].

The SPPAM approach assumes GP-regularities in en-
vironmental uncertainties, but different from most of the
researches in safe decision making, SPPAM is essentially
a path planning algorithm which plans an executable path
for AVs while ensuring safety. State-of-the-art safe decision
making techniques in GP-regulated environment are targeting
at different objectives (either pure exploration or learning),
thus are not directly applicable for path planning tasks.

III. SAFE PATH PLANING AND MAPPING (SPPAM)

This section introduces the SPPAM methodology: we first
describe the target AV application scenario, and then we
introduce the risk map representation and its update process
for stationary obstacles, followed by the dynamic obstacle
risk map update and prediction process. After that, the
SPPAM method with its improvements is presented, followed
by the algorithm flow diagram.

A. Application Scenario, Assumptions and Risk Map Repre-
sentation

The scenario that we are looking at is to navigate an
autonomous vehicle from an origin (O) to a destination point
(D) in a two dimensional (2D) environment with (possibly
dynamic) obstacles, which can be pedestrians, bicycles or
other vehicles. We presume that the ego vehicle has real time
object detection and tracking algorithms which output the
real time estimated location (µ̂i) and speed (v̂i) of obstacle
i. Both µ̂i and v̂i are assumed to be Gaussian Processes
(GPs) with known variance and the mean of the GP is the
true value of corresponding estimators, i.e., µ̂i ∼ N (µ,Σµ)
and v̂i ∼ N (v,Σv). For localization and path planning,
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the 2D environment is discretized as grids, and we assume
that the ego vehicle knows its current location st, and can
deterministically transit to st+1 ∈ A(st), where A(st) refers
to the set of grids who are reachable from st, i.e. st’s
neighbours.

The risk map of the 2D environment is a spatially varying
function, which describes the probability that any point in
the environment is possessed by an obstacle, i.e., p(x, y),
where x and y are the coordinates of the 2D environment2.
We use pi(x, y) to denote the probability that obstacle i
is in position (x, y), and the following equation holds:
p(x, y) = 1 −

∏m
j=1(1 − pj(x, y)), where m is the total

number of obstacles in the environment. The equation is
derived from [23].

B. Risk Map Update Process for Static Obstacles

Now, we have modelled the output of the object detection
module as a Gaussian process and the risk map as a function
delivering the probability that any point is possessed by
an obstacle. Another assumption is that the prior of the
obstacle location distribution (p(u)) is also a GP, whose
mean and variance are µ0 and Σ0, i.e. µ ∼ N (µ0,Σ0). We
will relax this assumption a bit during the implementation
phase, in which we approximate the prior mean with the
object detection module’s first output. Focusing on one static
obstacle in the environment, with a streamline of the outputs
from the object detection module (µ̂1,µ̂2,. . . ,µ̂k), and we
then derive the risk map update process.

We denote µ̂t:t+k as the streamline output of the object
detection module from time t to time t+k, and p(µ|µ̂t:t+k)
as the posterior distribution after k outputs from the object
detection module. The risk map update process is to derive
p(µ|µ̂t:t+k) given p(µ|µ̂t:t+k−1) and µ̂k. The derivation
procedure is as follows:

p(µ|µ̂1:k) ∝ p(µ̂1:k|µ)p(µ)

= p(µ)
k∏
i=1

p(µ̂i|µ)

∝ exp
(
− 1

2
(µ− µ0)>Σ−10 (µ− µ0)

)
k∏
i=1

exp
(
− 1

2
(µ̂i − µ)>Σ−1µ (µ̂i − µ)

)
= exp

(
− 1

2

(
(µ− µ0)>Σ−10 (µ− µ0)

+

k∑
i=1

(µ̂i − µ)>Σ−1µ (µ̂i − µ)
))

∝ exp
(
− 1

2

(
µ>(Σ−10 + kΣ−1µ )µ

2Note that the environment, when used for obstacle and risk map
description, we treat it as a continuous map, and when used for path planning
and localization, we treat it as a discretized grid map. The transformation
between continuous map and discrete one is straightforward. We can assume
that each grid is 1× 1, and whatever quantity computed for the continuous
environment representation is equal to the discrete case.

− 2(µ>0 Σ−10 +

k∑
i=1

µ̂>i Σ−1µ )µ
))

∝ exp
(
− 1

2

(
(µ− µk)>Σ−1k (µ− µk)

))
,

where Σk = (Σ−10 + kΣ−1µ )−1 and µk = (Σ−10 +

kΣ−1µ )−1(Σ−10 µ0 +
∑k
i=1 Σ−1µ µ̂i). The on-line risk map

update process (which computes µk and Σk given real
time input µ̂k and µk−1 and Σk−1) is straightforward,
which can be expressed as: Σk = (Σ−1k−1 + Σ−1µ )−1, and
(Σ−1k−1 + Σ−1µ )−1(Σ−1k−1µk−1 + Σ−1µ µ̂k).

From the risk map derivation process, it can be seen that
the posterior distribution of the obstacle given a streamline of
outputs from the object detection module follows a Gaussian
process with mean µk and covariance function Σk, which is
calculated in the preceding paragraph. For environment with
only one obstacle, the risk map is represented as p(x, y) =
1/
√
|2πΣk| exp

(
− 1

2 ((x, y)>−µk)>Σ−1k ((x, y)>−µk)
)
.

For environment with m static obstacles, with risk map for
each obstacle represented as pi(x, y), the overall risk map is
calculated as: p(x, y) = 1−

∏m
i=1(1− pi(x, y)).

C. Risk Map Update Process for Dynamic Obstacles

For dynamic obstacles, the risk map representation is more
complex than the static one, as the risk value for a point in the
environment is defined as the probability that any object is in
that point within a period of time. The risk map for dynamic
obstacles is thus a spatially varying function (p(x, y)), which
describes the probability that there is an obstacle in that point
within a specific time horizon (t to t+k), which is referred as
k-step lookahead risk map. We prescribe that the ego vehicle
is equipped with both object detection module which outputs
the (possibly noisy) position (µ̂t) of the object and object
tracking module which outputs the noisy velocity (v̂t) of the
object.

It has been assumed that both µ̂t and v̂t are GPs with
mean value at the corresponding true values (µt, and vt
respectively), and known variance denoted as Σu and Σv ,
respectively. We further make a reasonably assumption that
the acceleration ak of the object is also a GP with mean ak−1
and known covariance function Σa. We first focus on the risk
map calculation process for one dynamic obstacle case, and
then derive risk map for multiple dynamic obstacles.

This risk map update problem can be decomposed into two
phases. The first phase (called filter phase) is to calculate the
distribution of µk and vk given the series of detection and
tracking outputs from time 1 to time k, and the second phase
(called the prediction phase) is to predict the distribution of
µk+1 and vk+1 given µ̂1:k and v̂1:k.

Before laying down the calculation process of the filter
phase and the prediction phase, we first display the following
three theorems related to GP omitting the proving process
due to page limitations.

Theorem 1. Given X ∼ GP(µ,Σ), where X ∈ Rn, and
A ∈ Rm×n. We have Y = AX which is also a GP, i.e.
Y ∼ GP(Aµ,AΣA>).
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Theorem 2. Given X ∼ GP(µ1,Σ1) and Y ∼
GP(µ2,Σ2), a RV Z whose pdf is defined as p(z) =
px(z)py(z) is also a GP, with mean and covariance matrix
as µz = (Σ−11 + Σ−12 )−1(Σ−11 µ1 + Σ−12 µ2) and Σz =
(Σ1

−1 + Σ2
−1)−1 respectively.

Theorem 3. Given X ∼ GP(µ1,Σ1) and Y |X ∼
GP(x,Σ2), then Y is also a GP, with covariance matrix
Σy =

(
Σ−12 −Σ−12 (Σ−12 +Σ−11 )−1Σ−12

)−1
and mean µy =

ΣyΣ
−1
1 (Σ−12 + Σ−11 )−1Σ−11 µ1, i.e. Y ∼ GP(µy,Σy).

With the three theorems above, we are ready to proceed
with the risk map derivation process for dynamic obstacles.
The filter phase is to calculate p

(
(µk,vk)|µ̂1:k, v̂1:k

)
.

Theorem 4. Given µ0 ∼ GP(µ̄0, Σ̄
µ
0 ), v0 ∼ GP(v̄0, Σ̄

v
0 )

and ∀ k ≥ 0, ak ∼ GP(āk−1, Σ̄
a
0 ), we have(

(µk,vk)|(µ̂1:k, v̂1:k)
)
∼ GP(µ̄kΣ̄k) with µ̄k and Σ̄k

recursively represented as a function of µ̄k−1 and Σ̄k−1.

The proving process is omitted here due to page limita-
tions, the key idea is to recursively derive the conjugate rela-
tionship between posterior (µk and vk given new detection
results) and prior (µk−1 and vk−1)). We present the recursive
computation procedure of µ̄k and Σ̄k here. Σ̄

s
k =

(
Σ−1s −

Σ−1s
(
Σ−1s + (AΣ̄

s
k−1A

> + bΣa
0b
>)−1

)−1
Σ−1s

)−1
, and

µ̄sk = Σ̄
s
k(AΣ̄

s
k−1A

> + bΣa
0b
>)−1

(
Σ−1s + (AΣ̄

s
k−1A

> +

bΣa
0b
>)−1

)−1
(AΣ̄

s
k−1A

> + bΣa
0b
>)−1ŝk, where the def-

initions of A and b are presented in Theorem 5.

Theorem 5. Given that sk|s0, ŝ1:k ∼ GP(s̄k, Σ̄k), and
ak ∼ GP(0,Σa), the RV sk+1 is also a GP.

Proof. We can represent sk+1 from sk and ak as follows3:

sk+1 = Ask+bak, where A =

[
1 ∆t
0 1

]
and b =

[
0

∆t

]
.

We can see that sk+1 is an affine transformation of sk and
ak. According to Theorem 1, we conclude that sk+1 is also a
GP. We have sk+1 ∼ GP(s̄k+1, Σ̄k+1), where s̄k+1 = As̄k
and Σ̄k+1 = AΣ̄kA

> + bΣab
>.

D. Risk Map Representation for both Static and Dynamic
Obstacles

As we have described in the first subsection, the risk
map (p(x, y)) is a spatially varying function describing the
probability of having an obstacle in (x, y), however, when
dealing with dynamic obstacles, we have to include the
probability of having an obstacle in the future time step. For
dynamic obstacle i, we denote pik(x, y) as the probability
that obstacle i is in position (x, y) at time step k. For static
obstacle j, we denote pj(x, y) as the probability that obstacle
i is in position (x, y). We define p(x, y) as the probability
that there is at least one obstacle in position (x, y) from
time step t to t + k; suppose there are m static obstacles

3Note that we are being a little sloppy here in that every element of A
and b should be multiplied by an identity matrix I ∈ R2×2, because st and
vt are two dimensional vectors rather than scalar variables. Nevertheless,
the current representation forms of A and b convey the same meaning.

and n dynamic obstacles, then, p(x, y) can be calculated as
p(x, y) = 1 −

∏m
i=1(1 − pi(x, y))

∏n
j=1(1 − pjk(x, y))(1 −

pjk+1(x, y)).
As pi(x, y) for static obstacles, pjt (x, y) to pjt+k(x, y) for

dynamic obstacles can be analytically derived out of the
object detection and tracking module’s data stream output
from the last two subsections, then the risk map is obtained.

E. Safe Path Planning with Gaussian Process Regulated Risk
Map

Suppose that the risk map which is a spatially varying
function has been calculated based on the streamline input
from the object detection and tracking module, SPPAM
will calculate the shortest safe path connecting the ego
vehicle from an origin (O) to a destination point (D) in the
environment with possibly dynamic obstacles. To formulate
SPPAM into a mathematical programming framework, we
first need a clear definition of safety, and hence the definition
of a safe path.

Definition 1. An ε-safe grid: A grid in a 2D grid map is
said to be ‘ε-safe’ if the probability that the grid has any
obstacle between the current time step k and the next time
step k + 1 is less than ε.

Definition 2. An ε-safe path: A path is said to be ‘ε-safe’ if
all the nodes along the path are ε-safe.

Therefore, the SPPAM algorithm is to find the shortest
ε-safe path with the risk map. We wish to note here that
we treat each grid in the grid map as a 1 × 1 grid, and
approximate the probability that any grid has an obstacle as
p(x, y) × 1 × 1 = p(x, y), in which x, y refer to the center
coordinate of the grid. With the two definitions above, we
can formulate the SPPAM problem as:

minimize
g1,··· ,gT

T

subject to gt ∈ A(gt−1) ∀1 ≤ t ≤ T
p(gt) ≤ ε ∀1 ≤ t ≤ T
g0 = s0 (1)
gT = sd,

where s0 and sd are the origin grid and destination grid of
the ego vehicle, respectively; A(gt−1) refers to the set of
grids that are achievable from gt−1, i.e, the neighbour set of
gt−1, and p(gt) is the risk value of the grid at gt.

The problem as defined in Eq. 1 is a constrained short-
est path problem. We can use Dijkstra’s algorithm to get
the solution by removing the ‘un-safe’ grids in the map.
However, in reality, the ego vehicle is navigating in dynamic
environment, the path needs to be adapted with new inputs,
and on the other hand, the safety criterion might be too strict
to reach a feasible path, let alone the shortest path. Therefore,
we improve the formulation of the SPPAM problem to
consider the infeasible path planning problem, and let the ego
vehicle find the ‘overall safest’ path and take the immediate
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action to one of the ε-safe nodes during path planning. The
improved SPPAM problem formulation is as follows:

maximize
g1,··· ,gT

T∑
i=1

log
(
1− p(gi)

)
subject to gt ∈ A(gt−1) ∀1 ≤ t ≤ T

p(g1) ≤ ε ∀1 ≤ t ≤ T
g0 = s0 (2)
gT = sd.

The problem as defined in Eq. 2 releases the constraint that
the path has to be a safe path, instead, it requires that the
immediate action is a safe action (which leads to an ε-safe
node), and the overall safety score for the path as quantized
by
∑T
i=1 log

(
1 − p(gi)

)
is maximized4. In this way, even

when the safe path per definition does not exist, the improved
SPPAM is still able to yield an action which leads to an ε-
safe node. With new information from the object detection
and tracking module, the risk map is updated, then SPPAM-
improved is executed again to calculate the next safe action
for the ego vehicle. The solution to Eq. 2 can be achieved
through Dijkstra’s algorithm as well.

F. Algorithm Flow Process

The SPPAM algorithm is depicted in Algorithm 1. After
initialization, SPPAM will loop between choosing the best
and safe action, and updating the risk map according to
output from object detection and track module until reach the
destination. The inputs to the improved SPPAM algorithm
are the risk map, an OD pair, and the safety threshold (ε).

IV. SIMULATION RESULTS AND ANALYSIS

This section evaluates the on-line risk map update process
in a simulated environment, and Section V shows system
implementation with safe path planner and the experimental
results on an autonomous vehicle testbed. Simulation is
performed on a PC with Ubuntu14.04 LTS, Intel Xeon(R)
CPU E5 − 2620 processor and 125.8GiB RAM. In this
section, we compare the risk map update process with [16],
which proposes a heuristic risk function, applicable to both
static and dynamic obstacle use cases. The safety threshold
(ε) is set to be 0.001 throughout the simulation, which means
that any point with p(x, y) ≥ ε within the environment is
deemed as a risky point.

A. Risk Map Update for Static Obstacles

We construct a very simple scenario to test whether the
GP-regulated risk map update process for static obstacles
works. The environment is modelled as a 100× 100 square,
with −50 ≤ x, y ≤ 50. We insert one static obstacle at the
center point (0, 0), which means that µ = [0, 0]>, we set

Σ0 = Σµ =

[
σ2
x 0

0 σ2
y

]
, where σ2

x = 2 and σ2
y = 1. We

4The overall safety score of a path is the probability that all the nodes
contained in the path does not have any obstacle. Therefore, it can expressed
as
∏T

i=1

(
1 − p(gi)

)
. Taking the log transformation, it becomes the

objective in Eq. 2.

Algorithm 1: The Improved SPPAM Algorithm Flow
Process

Input: safety threshold: ε, starting node s0,
destination node sd,risk map p(gt), prior for
m stationary obstacles and n dynamic
obstacles

Output: Safe path: contains g0, g1, · · · , gd
1 k = 0 and g0 = s0;
2 ∀ gk+1 ∈ A(gk), evaluate pgk+1

;
3 if rgk+1

< ε then
4 Apply Dijkstra’s algorithm to solve Eq. 2;

5 Execute gk+1;
6 if sk+1 6= sd then
7 ∀1 ≤ i ≤ m get µ̂ik+1 from object detection

module;
8 ∀1 ≤ j ≤ n get µ̂jk+1 and v̂jk+1 from the object

detection and tracking module;
9 update the risk map (p(x, y)) as described in

Section III-B and Section III-C;
10 Set k = k + 1;
11 return to Line 2;

12 Final.

perform the risk update process for 100 time steps according
to the iterative update algorithm as described in Section III-
B, and at each time step k, a new input µ̂k from the object
detection module is provided.

Fig. 1 shows the snapshots of the evolving process of the
ε-risky region5 at k = 0 (initial belief), k = 33, k = 66,
respectively. We can see that the ε-risk region shrinks and
gradually concentrates to the true obstacle location as k
increases. In [16], the ε-risky region is an analytical function,
which is not updated for static obstacles as new data comes,
therefore, the risk region is always equal to Fig. 1(a).

(a) k=0 (initial belief) (b) k=33 (c) k=66

Fig. 1. Risk map update process for a static obstacle, the size of ε-risky
region shrinks as more observations become available; yellow color refers
to the ε-risk region.

We want to further verify the hypothesize that with more
inputs from the object detection module, our proposed risk
map update algorithm will have more understanding about
the ‘true’ location of the obstacle, thus the posterior dis-
tribution of the obstacle will have lower entropy (smaller
|Σ|), and the posterior mean will asymptotically approach
the ‘true’ location of the obstacle.

5ε-risky region contains all the points with the risk value greater than ε,
and is painted yellow.
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Fig. 2. (a) The mean and standard deviation of the distance between
the estimated posterior mean and the true location of the obstacle. Blue
color shows standard deviation for 200 independent simulation runs; (b)
The uncertainty of the obstacle’s location VS. time steps.

Fig. 2(a) shows the Euclidean distance between the poste-
rior mean and the true location of the obstacle. Note that we
run the simulation for 200 independent runs, and therefore
show the mean results per step with standard deviation values
shown in blue colors. In the figure, we can see that the
posterior mean of the location estimation approaches the true
location asymptotically, and the uncertainty (quantified as the
standard deviation of the distance between the posterior mean
and the true location) also decreases which is visualized as
the width of the blue color. Fig 2(b) shows the evolving
curve of the uncertainty of the environment. We can see that
the posterior uncertainty about the location of the obstacle
(quantized as log |Σ|) decreases steadily as the time step
increases (because at each time step, there is a new input
from the object detection module). This result verifies the
hypothesize that with more data, the environment uncertainty
decreases, as also reported in [23].

B. Risk Map Update for Dynamic Obstacles

This section focuses on evaluating the risk map update
procedure for dynamic obstacles, and we construct two
simple yet representative scenarios6. In the first scenario
referred as the linear case, an obstacle is moving from
(−100, 0) to (100, 0) with a starting speed v0 = 5, and
constant acceleration a = 1. In the second scenario referred
as the circular case, an obstacle is moving with a constant
linear velocity (v0 = 5) in a circle centered at (0, 0) with a
radius of 75. These two simple scenarios are representative
in that any other curved movement can be mathematically
decomposed into a circular move and a linear move. We
use the on-line risk map update procedure as described in
Section III-C.

Fig. 3 shows comparison between k-step look-ahead GP-
regulated risk map out of SPPAM (k = 3) and that of [16]
for the linear case. The comparison of the two algorithms for
the circular case are shown in Fig. 4. Note that it is difficult
or unfair to compare the risk maps of the two algorithms
quantitively because they are looking at different metrics and
there is no absolute ground truth for the testing scenario.
What we can see is that the GP-regulated risk map is able

6The environment is a 200× 60 rectangle, and in the two scenarios, we
assume that there is only one obstacle which is the ego moving obstacle.

to generate curved risk map (as shown in the circular case)
which is more realistic in that the obstacle may move along
curves, while the work in [16] is predicting risk values in a
straight-line fashion.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Comparison of risk map update process for the linear case; (a)-(c)
refer to SPPAM risk map, and (d)-(f) refer to risk map in [16]. Yellow color
refers to ε-risky region for SPPAM risk map, and risky region for [16]

(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparison of risk map update process for the circular case; (a)-(c)
refer to SPPAM risk map, and (d)-(f) refer to risk map in [16]. Yellow color
refers to ε-risky region for SPPAM risk map, and risky region for [16]

From the figures, we can see that our algorithm performs
similarly with the work in [16] for the linear velocity case.
However, for the circular case, our algorithm works better
in that it can predict the future ‘curved’ path of the moving
obstacle, with the estimated posterior distribution of ak and
vk, while the work in [16] assumes a linear constant velocity,
thus cannot make ‘accurate’ risk map predictions for the
circular case. In essence, the SPPAM risk map is, in fact,
a spatially correlated pdf (probability distribution function)
describing the probability of having an obstacle in a point
within a time period. It has much more physical meaning
than other heuristic risk functions which predefines a certain
risk region around the observation.
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V. SYSTEM INTEGRATION AND IN-VEHICLE TEST

We have implemented the on-line risk map update process
for both static and dynamic obstacles, and the safe path plan-
ning algorithm in two AV testbeds (a buggy and a car). 2D
map is constructed through laser-based SLAM (Simultaneous
Localization and Mapping), and the adaptive Monte-Carlo
localization (AMCL) method [24] is used for localization.
For car detection, we employ a CNN-based 3D object
detection algorithm - Sparsely Embedded Convolutional De-
tection (SECOND [25]) as our backbone detection pipeline
and modified the Voxel-Feature-Extraction (VFE) layers to
include Variational Encoding (VE) layers, so as to provide
generative voxel features for dealing with sparse/less-dense
point cloud data. For pedestrian detection, we use the SVM
trained moving object detection algorithm [26] for 2D lidar
data stream, and 3D point cloud mask based model fitting
for the 3D Lidar data stream, respectively. The detection
modules output the bounding boxes of detected targets (i.e.,
car, pedestrian) containing the class, score, pose, and box
dimensions. For object tracking, we employ Kalman filter
and Hungarian Algorithm [27] as the backbone tracking
pipeline and develop a novel data association manoeuvre
with hand crafted velocity prior in certain regions where
symbolic road context information is available [28]. Inside
the Kalman filter, we assume a constant velocity motion tran-
sition as the common practice, but for places with curvature
information or crosswalks, we embed the updated velocity
with prior belief that pedestrians most probably will cross the
road on crosswalks or follow the road curvatures. This is due
to the assumption that velocity changes usually occur when
the target enters or leaves road sections such as roundabouts,
turnings, crossings, where the constant-velocity model does
not fit in. The software framework of the AV testbed is shown
in Fig. 5, which is adapted from [29].

Fig. 5. The software framework implemented in the AV testbed.

Fig. 6 shows the object detection and tracking results, and
Fig. 7 shows risk map update and corresponding safe path
planner. The obstacle detection and tracking module is able
to operate at 10Hz, risk map update together with safe path
planner operate at 5Hz, and the micro-controller is operating
at 40Hz. During in-field test, the ego vehicle reacts to the
safe path planner within 0.2s. Hence, the safe path planner is
able to react in real time (reaction time within one second),

and plan a path avoiding potential collisions with other road
participants. It is also able to re-plan another path whenever
it believes that the previous planned one is unsafe7.

VI. CONCLUSION AND FUTURE WORKS

This paper proposes a SPPAM approach for safe path
planning with GP-regulated risk map. Taking advantage of
the spatial dependencies of GPs, SPPAM is able to update the
risk map and re-plan the safe path accordingly. Simulation re-
sults show that the on-line risk map update process gradually
gains more understanding about the obstacles, as more object
detection and tracking outputs become available, which also
confirms our initial hypothesis in [23]. Experimental results
on real AV testbeds show the feasibility of SPPAM reacting
in real time to pedestrians and moving cars.

Currently, we have assumed accurate localization of the
ego vehicle, and we didn’t consider vehicle movement con-
straints, such as holonomic constraints. In the future, we
plan to additionally model the ego vehicle’s location within
the map as a GP, and improve SPPAM to consider vehicle’s
holonomic constraints as well. Another direction is to include
speed control explicitly into the safe path planner so that the
ego vehicle is able to follow other vehicles to pass a narrow
passenger instead of trying to overtake them aggressively,
as currently shown in Fig. 7(c) and Fig. 7(d). We are also
keen on including more road context information such as
road markings, lane information, into the SPPAM algorithm
as well, similar to the work in [29].
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